
34 www.SYS-CON.COM/pbdj/PBDJ volume12 issue2

? ? ?

When to use which?

Sometimes it simply doesn’t matter
whether you use a function or an
event, just pick one and stick to it

This article will shed some light on
the differences between the two ways of
implementing scripts in Powe r Bu i l d e r:
functions and eve n t s. I will discuss the
issues in detail, giving background infor-
mation on each of them. Then yo u’ll be
able to decide for yourself when to use
w h i c h .

In the old days of Powe r Bu i l d e r, func-
tions and events we re a different kind of
beast. But as Powe r Builder evo l ve d ,
functions and events became more and
m o re similar. Now many pro g ra m m e r s
a re n’t sure what the differences are, and
when to use which.

In the Sybase Powe r Builder news-
g roups (see news://foru m s. s y b a s e. c o m)
yo u’ll find a wealth of information, but I
d i d n’t find a thorough and up-to-date
posting on the issue. So in this article I
will tell you the similarities and the dif-
f e rences of functions and eve n t s. By the
w a y, I used Powe r Builder 10 for my com-
p a ri s o n .

P relude: Correct Te r m s
In this art i c l e, the following term s

f rom the object-oriented domain will be
u s e d :
Me t h o d : used as a general term for func-
tion or eve n t .
O ve rl o a d i n g : implementing a method in
a class that already has a method with
such a name, the difference lies in the
a rgument types. No inheritance is
i n vo l ved. Overloading in Powe r Builder is
useful for quite a few things:
• Mimicking optional arguments to

functions: Other languages can define
default values for arguments in the
definition of the function itself. If yo u
omit those arg u m e n t s, the system will
use the default va l u e s. Because Powe r-
Builder doesn’t (yet!) have this func-
t i o n a l i t y, we can mimic it by the using
overloading. Simply implement a

function with its re q u i red para m e t e r s.
After that, implement another func-
tion with at least one less arg u m e n t
(beginning on the right-hand side, of
course). Then, in the new functions,
call the first function with the missing
a rguments set to default va l u e s.

• Su p p o rt for different datatypes: yo u
want to define a function that can
either take an integer or a string as
input. You can give them the same
n a m e, just use integer as the arg u-
ment type for the first, and string for
the argument type of the second func-
tion. At ru n t i m e, Powe r Builder will
find the correct function for you.
A good example for overloading can

be found in the class systemfunctions:
Me s s a g e Box. You will find both of the
issues above implemented there, option-
al arguments (leave out all but the first
two arguments) as well as different data
types (either use a string or an integer as
the second argument). Picture 1 give s
you a snapshot of the Powe r Bu i l d e r
b row s e r.

O ve r riding: implementing a method
in a deri ved class using an identical set
of arguments (names as well as
datatypes) found in the base class. It
needs at least one base and a deri ve d
class to be implemented. Ok a y, this is
nothing new to you. You do it eve ry day
when pro g ramming in Powe r Bu i l d e r.
Simply doubleclick on an event in the
e vent list or a function in the function
list and, voila, – the ove r riding is done.
P i c t u re 2 will show you the differe n c e
b e t ween overloading and ove r riding.

Powe r Builder also has its own term s :
E x t e n d i n g : implementing an event in
such a way that the code of the base
class is executed before the code of the
c u r rent class. In deep class hiera rc h i e s
this means that the code of the root class
is executed first, then the code of the
class deri ved from it, then the code of
the class deri ved from that class…until
you reach your own code, which exe-
cutes last. You can switch this behaviour

by toggling the “Extend Ancestor Scri p t”
in an eve n t’s context menu. Un f o rt u-
nately there’s no way to see whether an
e vent is extended or not just by looking
at the event script painter. You need to
rightclick to the script and check
whether “Extend Ancestor Scri p t” is
checked or not. (For those of you who
a re ISUG members there’s an enhance-
ment request to show that inform a t i o n
in the script painter. Please go to
@@@todo to vote for it.) Extending used
to have the drawback that one couldn’t
access the re t u rn value of the base eve n t .
But Powe r Builder introduced a meta-
va ri a b l e, ancestorRe t u rn Va l u e. You don’t
need to declare it, it’s already available if
you extend an event. AncestorRe t u rn Va l-
ue always has the datatype re t u rn e d
f rom the eve n t .

S i m i l a r i t i e s
As I said before, functions and eve n t s

a re ve ry similar (this is one reason why
i t’s hard to decide when to use which).
These things do have functions and
e vents in common:
• Functions and Events can be POSTED

by using the keyword POST
• The function or event of a direct base

class can be called by using super: :
• The function or event of an arbitra ry

super class can by called by using
C l a s s n a m e : :

• Ac c o rding to the Powe r Builder online
help there’s no perf o rmance differ-
ence between functions and eve n t s

• Functions and events can be ove r ri d-
den easily by doubleclicking the func-
t i o n / e vent list.

• Functions and events can be imple-
mented using the same script painter.
I mention this because up to PB 6, yo u
used a different approach for each.
Ancestor code can be seen by using
the rightmost dro p d own in the scri p t
p a i n t e r

D i f f e re n c e s
So now for the interesting part: what are

Functions and Events

AUTHOR BIO
Roland Mühlberger

works as a PowerBuilder
class librarian and

software engineer for
the Austrian company

ecosys. He also runs his
owns business (ROMU

Software) as an
independent consultant.

His special interest,
besides mountain

climbing, is program-
ming tools. He's the

author of SmartPaste, a
tool for documenting

PB source code.

WRITTEN BY
ROLAND

MÜHLBERGER

35www.SYS-CON.COM/pbdj/ PBDJ volume12 issue2

the differences? Some of them are ra t h e r
academic, but can be ve ry import a n t ,
especially to people writing class
l i b ra ri e s.

ACCESS LEVELS
You can only define the access leve l

for functions: it can be either “p ri va t e.”
which means you can only call it fro m
within the same class, or “p ro t e c t e d ,”
which means you can call it from within
the same or inherited classes, or “p u b-
l i c ,” which means you can also call the
function from outside the object.

Events are implicitly public, there’s no
way to make them pri vate or pro t e c t e d .

O V E R L O A D I N G
Only functions can be ove r l o a d e d .

Just look into any system class. Powe r-
Builder uses this ability in most of them.
Events can’t be overloaded. If you try,
Powe r Builder will say “Duplicate eve n t
n a m e.”

OVERRIDING
Both functions and events can be

ove r ridden. But whereas new events are
implicitly extended, functions are n’t .
He re you need to call the base class
function explicitly.

DYNAMIC CALLS
When you use DYNAMIC to call a

method, functions and events behave
d i f f e re n t l y. Functions will produce a ru n-
time erro r; events will fail silently. Yo u
will even have a chance to find out
whether the event really existed, because
Powe r Builder will set re t u rning any
value to NULL if it doesn’t find it.

Using exception handling you can
catch the runtime error that Powe r-
Builder throws (“dynamic function not
f o u n d”) when a function called dynami-
cally isn’t found.

TRIGGEREVENT
Another kind of dynamic call is using

the Tri g g e r Event. You can build an eve n t
name during runtime and use the name
(a string va riable) to call an event.

This is an interesting feature in PB
and the only thing close to “f u n c t i o n
va ri a b l e s” that Powe r Builder prov i d e s.
The good thing about it is that the eve n t
d o e s n’t need to exist at ru n t i m e.

The downside is you can’t prov i d e
any parameters to the called event or get
the result (apart from using any global
means for the exc h a n g e, for instance,
the message object). All the arg u m e n t s
you defined will be NULL using this syn-
tax and the re t u rned value is simply lost

in cyberspace. T h e re’s no such possibility
with functions.

POSSIBILITIES FOR EMBEDDED OBJECTS
When you embed an object in anoth-

er (for instance, putting a control on a
w i n d ow or adding an object to the non-
visual object list), thus implicitly cre a t i n g
an embedded class, you can only edit its
e ve n t s. You can ove r ride/extend them or
e ven add eve n t s. Powe r Builder gives yo u
no way to ove r ride or add functions to
those embedded classes. This is really a
GUI deficiency because the tests I ra n
s h owed that Powe r Bu i l d e r’s syntax
would allow add/ove r ride functions for
embedded classes.

A major drawback is that you can’t
view the ancestor code for functions in
embedded classes. But, as I said, this is
only a matter of the script painter not

letting us. The Powe r S c ript parser can
w o rk with functions in embedded class-
e s. Who know s, maybe we’ll get some
way to view and implement functions
for embedded classes as we l l .

EXCEPTION HANDLING
Built-in events (like open, clicked,

e t c.) can’t throw a checked exception (an
object of a class deri ved from the system
class Exception). You can only use
unchecked exceptions (all objects of a
class deri ved from Ru n Ti m e Er ror). T h e
reason is that checked exceptions must
be defined in the event interf a c e, and
the event interface for built-in events is
a l ready defined by Powe r Bu i l d e r.
Checked exceptions need to be defined
as part of the method interface (and
t h e re f o re force the caller to deal with
them) whereas an unchecked exc e p t i o n
d o e s n’t have need that.

THE NEED FOR RETURN STATEMENT
In built-in eve n t s, there’s no syntacti-

cal need to issue a RETURN statement.
Powe r Builder will simply re t u rn 0 in that
case (which means “c o n t i n u e” in the
Wi n d ows API sense. Re t u rning 1 would
mean “stop processing, I’ve already han-
dled the call.”)

Us e r-defined events and functions
need to implement at least one RETURN
statement when a re t u rn type is
d e c l a re d .

MESSAGING SYSTEM
Events can have message IDs. By

selecting a message ID, you tell the sys-
tem to call this event whenever the mes-
sage with the selected message ID
occurs in your application. Powe r Bu i l d e r
a l ready predefines many events (the

clicked event on Co m m a n d Buttons), but
you can map any event of the event ID
d ro p d own to your own event (for exam-
p l e, pbm_other).

This system is only available for
e vents and not functions. Ac t u a l l y, this
was the main difference between func-
tions and events in the early stages of
Powe r Bu i l d e r, because there was no way
to create an event without having an
e vent ID.

CROSS-APPLICATION METHOD CALLS
If you have to send a message to a

Powe r Builder pro g ram from outside, the
only way to do it is to use the opera t i n g
s y s t e m’s own messaging system. T h e re’s
a range of user-defined message IDs that
you can use (starting at 1024). In Powe r-
Builder you map those messages to
e vents with custom event IDs. Pbm_cus-
tom01 maps to 1024, pbm_custom02

FIGURE 1 |

36 PBDJ volume12 issue2 www.SYS-CON.COM/pbdj/

maps to 1025, and so on. You are limited
in the arguments you can use. T h e re are
only two predefined arguments – lPa ra m
and wPa ra m .

Calling events from outside works for
all objects that have a Wi n d ows handle
(w i n d ow s, windows contro l s, ...) because
the calling application needs to know
this handle as well to make the call.
T h e re’s no way to call a function fro m
outside an application.

Conclusion
Now that we have ticked off the simi-

l a rities and differe n c e s, it’s time to
d e c i d e. In fact, there’s no definitive deci-
sion to be made between functions and
e ve n t s. It lies in how you do your pro-
g ramming. But I can give you some
advice to help you make your decision:
• When pro g ramming a class libra ry or

any class that you think will be used or
d e ri ved from quite a lot, try to be “a c a-
d e m i c” and think about access leve l s.
D o n’t make the methods public that
s h o u l d n’t be called from outside. T h e n
i t’s clear that you will use functions for
them instead of eve n t s.

• Use the “template functions” and
“hotspot eve n t s” system. That means
that code that shouldn’t be ove r ri d d e n
(the template methods) sits in func-
t i o n s, and code that should be ove r ri d-
den (the hot spots) sits in eve n t s. T h e
reason is that you can define the
access level for the functions (the ones
that are called from outside), and
when you inherit, you usually only
need to implement eve n t s, making the
list of spots to ove r ride short e r.

• If you use exception handling with
checked exc e p t i o n s, you are limited to
using user-defined events and func-
t i o n s. Quite a big discussion has been
going on about checked and
unchecked exceptions in the news-
g roups of other pro g ramming lan-
g u a g e s. I personally dislike the
checked ones because they intro d u c e
implementation details to the inter-
face of the class. W h e n e ver I change
the implementation and I’m forced to
t h row other exc e p t i o n s, I need to
change the function interface as we l l .
So all pro g rammers using my class are
f o rced to change their code as we l l ,
which is bad. So for me, this issue
d o e s n’t exist. I can throw exceptions in
e vents as well as functions, because I
simply use the ones inherited fro m
Ru n Ti m e Er ror instead of Exc e p t i o n .

• Use functions for overloading.
• Use events to give a pro g rammer a

chance to ove r ride the logic in embed-
ded classes. This is particularly true for

base classes of controls (yo u r
Da t a Wi n d ow ancestor, for example).

You won’t use functions or eve n t s
e xc l u s i ve l y. In fact, there are lots of times
when it simply doesn’t matter whether
you use a function or an event to imple-
ment your sourc e. In those cases, yo u
should decide and stick to one or the
o t h e r. But sometimes it’s good to think
ahead and choose wisely. This list of dif-
f e rences will help you do that.

o f f i c e @ ro m u . c o m

