
W H ITE  PA P E R

COMPARING SYBASE® POWERBUILDER®

AND MICROSOFT® .NET

A N  E VA LUATI O N  G U I D E  F O R  P OW E R B U I L D E R  D EV E LO P E R S

BY DON HARRINGTON, PRINCIPAL, BLUETAIL LIZARD CONSULTING

THEENTERPRISE.UNWIRED.

 



TA B L E  O F  CO NTE NTS

SYBASE 
POWERBUILDER

Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

Overview of .NET  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2

Overview of PowerBuilder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3

Evaluation Guidelines for PowerBuilder Shops Looking at .NET  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4

Peaceful Coexistence  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8

Conclusion  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9

Don Harrington is a developer, consultant, and

trainer with more than twenty years of experience

in managing the design and development of

business and Web applications for technology

companies.

 



I NTRO D U C TI O N

Each year development managers are called upon to defend their strategic vision, and the
economic repercussions of executing upon this strategy. As visionaries, have they been able to
look at the alignment of new technology with the business goals of the enterprise? As decision-
makers, can they prove that the actions they’ve taken resulted in clear, measurable benefits?
Development managers must also factor in the input of the developers they lead, and many
developers want to broaden their skills and ride the edge of the latest technology wave. As a
result, managers are often caught between top-down and bottom-up pressures in choosing
new technology directions. No one worth listening to ever said management was easy.

Developers are constantly facing an onslaught of new and evolving technologies. Vendors
jockey to differentiate themselves by adding new features that will attract a greater market
share. In the case of Microsoft .NET, the huge marketing push behind the debut explained .NET
was not simply evolutionary; it represented a new paradigm for the future. Many development
organizations grew concerned that they would be left behind if they did not immediately
transform into .NET shops. What the immediate converts found in .NET was the latest generation
of Microsoft’s technology that, while powerful, lacked a spirit of openness and was high on
the scale of complexity.

It takes a disciplined perspective to balance strategic vision with economic benefits when
choosing to adopt a new developer framework. Canny managers will ask: is it better, does it
make economic sense within the context of the organizational needs, and what are the long-
term repercussions of embracing the new technology? 

This paper examines .NET and PowerBuilder from the perspective of a development manager
with PowerBuilder applications. While it is challenging to distill a considered viewpoint from the
saturation of .NET information, we will strive to tell the truth. A complete conversion to .NET
is not the answer. There is a large PowerBuilder investment in the marketplace and replacing
it is not necessarily the most cost-effective action. In the following sections we’ll evaluate both
the .NET and PowerBuilder technology, the issues for and against a migration from PowerBuilder
to .NET and finally, we’ll examine the approach of leveraging existing PowerBuilder code and
development resources to achieve the best of both worlds with co-existence.

1



2

OV E RV I E W  O F  . N E T

Microsoft’s .NET debuted as a technology preview in June of 2000, hammering the message ‘The
Internet for Everything.’ The definition of .NET was all encompassing, yet so ambiguous that
even technically capable consumers couldn’t say exactly what .NET was or did. Once the initial
impact of the marketing blitz attenuated, the level of lingering buzz was disappointing to Microsoft.
Two years after the .NET introduction, Bill Gates was widely quoted as saying “In some respects,
we’ve gotten further ahead than we expected, and in other respects we haven't made as much
progress as expected.” The relatively slow pace of .NET adoption underscores the point that
Microsoft .NET, while a good technology with a huge brand behind it, has not led a fundamental
shift in the industry. Successful applications are still being built for the Win32 platforms without
taking advantage of .NET, and the unconverted have not withered away.

A general definition of .NET is a program development and execution platform. The programs
run wherever .NET resides. Microsoft .NET is a set of technologies targeted at  addressing a
broad class of applications including standalone, client/server, mobile, smart client, and Web-
deployed applications.

Microsoft’s development portion of .NET encompasses Visual Studio.NET, the Integrated
Development Environment (IDE) that supports application development in various languages.
This tool supports several languages, including C# (C Sharp), a language with its roots in C++
and Java™, yet developed specifically for the .NET platform. To continue supporting its legacy
development language Visual Basic, Microsoft supplies VB.NET with upgraded Visual Basic
libraries. The execution portion of .NET consists of tools such as the Windows.NET Server and
services like .NET Passport to support and manage the execution of the deployed applications.

TH E  . N E T  F R A M E WO R K

The collective assembly of .NET platform components is referred to as the .NET Framework.
These components fall into two main areas: the Common Language Runtime (CLR) and the
hierarchical class libraries. The Common Language Runtime is the internal execution engine
for .NET applications.

One of the unique aspects of the .NET technology is how it handles compiled code. A .NET
compiler does not generate code for a specific operating system such as Windows 2000 or XP;
instead, it generates code in Microsoft Intermediate Language (MSIL) that is packaged in
assemblies. These MSIL assemblies are compatible with the .NET platform. At runtime the
.NET platform manages the final step of code generation to the target operating system.

The CLR manages the code conversions from the compiler-generated MSIL code into compatible
native code for the actual Windows platform on which the application is executing. Once an
executable’s code is loaded on a new system, the CLR does not run the final compilation on the
whole body of code. It uses a just-in-time strategy of compiling each method within the code into
the native system code as it is called for the first time. The CLR is also responsible for loading and
executing programs, memory management, cross-language type compatibility, and for enforcing
the security properties of the executing code. The other portion of the .NET Framework, the
class libraries, provides common functionality to the executing applications as they run. 



3

OV E RV I E W  O F  P OW E R B U I L D E R

PowerBuilder is the powerful development environment from Sybase that has a rich history of
providing an exceptionally high level of productivity for developers building database-driven
applications. PowerBuilder developers create both client/server and distributed n-tier applications.
PowerBuilder includes an intuitive IDE, support for multiple external standards, a rich set of
libraries, and the unique and patented DataWindow technology. This combination makes
PowerBuilder an exceptional OO RAD programming environment.

PowerBuilder is a 4th Generation Language (4GL), Rapid Application Development (RAD)
platform. PowerBuilder is an open platform with wide support for commonly used and emerging
technology standards, and can easily integrate with components across the enterprise. The 4GL
unifies the external technologies and provides a high level of abstraction to simplify complex native
interfaces. A programmer with PowerBuilder skills can use any of the incorporated technologies
in their code development. PowerBuilder is known for its productivity, which comes from the
combination of 4GL abstractions, a mature workflow-driven IDE, and the DataWindow® object.
This combination provides a high-level, abstracted environment that hides all but the salient
details of developing database-driven applications.

An important feature that differentiates PowerBuilder applications from .NET applications is multi-
platform portability. PowerBuilder runs across all Win32 platforms, and when used in conjunction
with EAServer, PowerBuilder components can be deployed on a number of Unix platforms.

PowerBuilder’s rise to the top of the client-server market was based on its high level of productivity
and its ability to work with any database. It is an open, database-agnostic development environment,
and provides rich support for both Sybase database technology and other vendors’ databases.
PowerBuilder applications are frequently deployed with a variety of backend databases including
Sybase Adaptive Server®; Oracle®; MS SQL Server, DB2 and Informix, with additional access to a
wide range of additional data sources through ODBC, JDBC, and OLEDB.

PowerBuilder plays well with other languages. Developers can easily build applications which
make function calls to external DLLs. And, as of PowerBuilder 9.x, a new feature PowerBuilder
Native Interface (PBNI), provides the capability to incorporate C and C++ applications into a
PowerBuilder application as PowerBuilder objects. PowerBuilder applications can also use the
PBNI to interface directly to Java with JNI and call EJBs in third-party application servers.
The PBNI also provides the means for Java classes to call PowerBuilder functionality. 

Increasingly developers have to support heterogeneous environments. Mergers, acquisitions, and
the economic need to preserve legacy investments while adding new application capabilities have
led to a mixture of enterprise applications across multiple platforms, each with its own RDBMS.
PowerBuilder supports open standards, including J2EE, making it an excellent tool for integrating
these diverse data sources. 

With PowerBuilder 9.0, applications can build, publish, and consume Web Services. PowerBuilder
has a powerful, abstracted XML Document Object Model (DOM) interface. With the XML
DOM interface, PowerBuilder developers can parse, manipulate, and create XML to support
Web Services and exploit the generalized utility of XML for inter-application data communication,
complex data structures, and structured flat files. 

 



Release 10.0 of PowerBuilder enriches PowerBuilder’s Web Services support with UDDI search
and browse capabilities to enhance the public and private Web Services discovery process.
PowerBuilder 10.0 also supports Unicode to simplify the maintenance of user interfaces across
different languages, and interactions with databases that store Unicode information. Some addi-
tional features of 10.0 are a PowerDesigner plugin for iterative Object Oriented modeling, and
the XML-enabled version of the Web DataWindow that supports XHTML with XSL and
Cascading Style Sheets to dramatically lower Web traffic requirements.

PowerBuilder applications can be deployed to .NET platforms, J2EE platforms, the Web, and
traditional client-server architectures. PowerBuilder functionality can also be re-packaged in
Pocket PowerBuilder applications for deployment to mobile users.

PowerBuilder has been the development language of choice for hundreds of thousands of database
developers building enterprise applications. Its ease of use and scalability makes it an extremely
popular choice for all sizes of projects, ranging from small company applications, to medium
department-based applications, to enterprise-wide solutions. PowerBuilder’s open development
environment is continually being enhanced to support emerging technologies. As developers’
needs change, so does PowerBuilder. This ensures that PowerBuilder developers will have an
always up-to-date skill set to continue developing the types of applications their users need, based
on the newest technologies available. 

EVA LUATI O N  G U I D E L I N E S  F O R  P OW E R B U I L D E R  S H O P S  

LO O K I N G  AT  . N E T

Decision makers have become more jaded in evaluating new technology and avoid knee-jerk
migrations to the latest product offerings. A careful reckoning of hidden costs and the potential
exposure of destabilizing field-tested applications often outweigh the promised benefits of new
technology. We’ll consider various arguments for and against a migration to .NET.

A R G U M E NTS  F O R  A  . N E T  M I G R ATI O N

In light of the high redevelopment costs, are there compelling reasons to retool an organization
with .NET technology? First, let’s examine the prevalent arguments for migrating to .NET:

1. .NET REPRESENTS THE LATEST TECHNOLOGY

In .NET, Microsoft created an excellent platform for code development; .NET was well
conceived and well executed. Microsoft has also put its best marketing effort behind letting
the world know how good .NET is, while seeding a message inferring that development
without .NET is somehow inferior and a future disadvantage.

When examining .NET as a potential technology, keep in mind that Microsoft did not develop
.NET for purely altruistic purposes and to make programmers multi-functional. They built it
to further dominate the marketplace. Latest does not always equate to greatest—there are
other viable alternatives that may be more suitable to different needs.

4



2. MANY PROGRAMMERS WANT TO BE .NET DEVELOPERS 

Microsoft .NET is a honey pot for attracting developers with technology that can address
many different types of applications. .NET gives a programmer the ability to be a journeyman
jack-of-all-trades with the mastery of one. 

From the perspective of a development organization, this should not be a compelling argument.
The organizational goal is productivity, stability, and – potentially – portability. This could
lead to problems down the road as .NET ties a programmer to a single vendor on a single
platform with a complex environment.

In reality, many programmers, especially 4GL programmers, will be neither comfortable nor
productive in a .NET environment. C# is an excellent general-purpose development language;
it also requires an extensive foundation in Object Oriented programming and a senior-level
background in architecting enterprise-class applications in a 3GL. .NET’s exposure of under-
lying implementation details increases the complexity of application development. While this
detailed exposure adds a fine level of control, it is an impediment to productivity. 

3. .NET OFFERS INTRINSIC SUPPORT FOR WEB SERVICES 

Web Services is well supported in .NET. It is surprisingly easy to make Web Services extensions
to .NET applications. Web Services is an effective method for applications to exchange infor-
mation locally and remotely using XML as the primary interchange format. 

Web Services is not by any means limited to Microsoft. Most vendors, including Sybase, offer
Web Services support even though the majority of applications in use today do not yet use them.
Objectively, how important is intrinsic Web Services support? Certainly it makes it easier to
develop Web Services-enabled applications, but how many Web Services does an application
need? Most applications don’t need to sprinkle them around like Command Buttons. 

When Web Services was initially introduced, many analysts foretold an immediate adoption of
the technology in all levels of applications. One of the most compelling ideas behind it was the
ability to create public registries of Web Services functionality. Applications could attach to
published Web Services by browsing the registry and consuming their functionality. That level
of adoption has not occurred due mainly to security concerns; instead Web Services implemen-
tations are most often found in trusted application-to-application communication. Public
registries are beginning to gain momentum, but far slower than originally envisioned. The
upshot is that Web Services-enabled applications are important, but not ubiquitous. Intrinsic
Web Services support is impressive, yet it does not automatically put wind in the sails of a
development organization. Public application-to-public application security is problematic,
and until it is addressed, widespread inter-enterprise adoption is unlikely. Meanwhile, since
Web Services are based on XML, existing PowerBuilder applications can utilize them easily

5



4. .NET CAN ADDRESS A BROADER CLASS OF APPLICATIONS

Microsoft .NET is a flexible technology that can be laser focused on low-level systems pro-
gramming development and also used in enterprise-wide application solutions. This breadth
of development is a compelling argument for .NET. 

PowerBuilder was not designed for low-level programming; it was designed for enterprise-scale,
rich-client or smart-client applications. The low-level development capabilities afforded by
.NET have little if any overlap with PowerBuilder’s class of applications because PowerBuilder
is an undiluted RAD platform for creating data-driven enterprise class applications. .NET’s
multi-level adaptability acts as both a strength and a weakness. As an analogy, many people
keep a Swiss army knife in their car. Swiss army knives are quite handy as multi-function tools
and include a screwdriver, wrench, and corkscrew. However, if you need to sink 100 screws,
your first choice of tool would not be the Swiss army knife. Instead, you would want a power
tool designed for setting screws. If the goal is rapid development of database-driven applications,
.NET does not compete with PowerBuilder because .NET must expose more of the underpin-
nings of the development environment so it can address a broad class of applications.

5. VISUAL STUDIO .NET IS AN EXCELLENT DEVELOPMENT IDE

Indeed, Visual Studio .NET is a fine development environment. You will find no argument
here. For the languages C#, Visual Basic, C, and C++ Visual Studio .NET is an excellent
development and debugging environment. Several third-party vendors are also providing
.NET versions of COBOL and Fortran. The CLR imposes some restrictions on these
languages, but they are supported. 

Other than Visual Basic, these are all 3GL languages, which mean greater flexibility and lower
productivity. At some point, it comes down to the developer writing lines of code. For most
database-driven applications, PowerBuilder—which also has an excellent IDE—supplies the
same functionality in fewer lines of code.

6. APPLICATIONS DEVELOPED FOR .NET ARE INTERCHANGEABLE ON ALL WIN32 PLATFORMS

Again, no argument here. For the supported languages, the CLR supplies interchangeability
across the Win32 platforms. 

Multiplatform portability, however, does not figure prominently in Microsoft’s marketing
plans. In the past, Microsoft has made noises about multiplatform support, but has rarely
followed through. It is very likely that .NET closes the door on portability outside of Win32.

7. .NET CONTAINS A RAD PLATFORM

Microsoft is quick to claim this, and by some comparisons it is true. The Visual Studio .NET
IDE nicely ties all the pieces together and has code generation capabilities. 

When drawing a comparison between the RAD development features of .NET and PowerBuilder,
Microsoft’s rapid development claim loses some steam. .NET could be called a pure program-
mer’s programming environment. It delivers exceptionally fine control over the smallest details
by exposing them. This is very pleasing to a programmer who desires to write deep and elegant
programs and believes they should be in charge of the finest details because they can do a better
job of implementing them. This ability to build a watch to tell the time is useful in certain situ-
ations, but it is not the definition of RAD. 6



Rapid Application Development means the development tool paves the way for development;
it means reaching the goal of a functional and robust application in the shortest amount of
time. Once the design is specified the developer should not have to look right nor left and the
development tool should take care of the details so the programmer can concentrate on the
unique aspects of the application. The programmer should be focusing on exposing the neces-
sary portions of the database structure to the user interface so the workflow best supports the
end user, or focusing on the business rules without being overly concerned with the underlying
implementation used to store them. 

It is important to remember that .NET is a cluster of technologies that represent a product strategy.
Microsoft did not win the Java wars and could not dominate the Java development market. It was
no surprise when Visual Studio dropped support for Java in the .NET version. Microsoft unabashedly
promotes its ‘JUMP to .NET’ strategy and offers its Java Language Conversion Assistant to convert
Java to C#. Rather than promoting JSP development, Microsoft explains at great length why
developers should be using ASP.NET. This seems to demonstrate an underlying product strategy
of Microsoft-only domination, rather than an open platform affording a best-of-breed selection
of development tools. 

Suspicion of this world domination strategy is one of the reasons .NET has not lived up to the
company’s early expectations of wildfire adoption. Assimilation by a single-vendor, regardless of
the vendor, makes planners pause for all the right reasons. These reasons include future price
hikes, exposure to underlying flaws like security holes and virus susceptibility with little recourse,
and the potential inability to use emerging technologies from other vendors.

A RG U M E NTS  AG A I N ST  A  . N E T  M I G R ATI O N

Now let’s examine some reasons why a wholesale conversion from PowerBuilder to Microsoft
.NET might not be the best course of action:

1. EXISTING CODE AND APPLICATIONS REPRESENT A SERIOUS INVESTMENT

Mature organizations have huge investments in their existing applications. The code has been
developed, tested, deployed, successively refined, and proven. The development staff has been
trained and understands not only the body of developed code, but also the way the code maps
to the problem domain. For companies with PowerBuilder applications, this code represents a
large, multi-year investment in code development and programmer expertise. Unless a devel-
opment platform is discontinued, or it is unable to keep pace with new initiatives—neither of
which is the case with PowerBuilder—there is no compelling reason to completely reboot a
development organization in favor of .NET.

2. A RAPID APPLICATION DEVELOPMENT ENVIRONMENT GETS RESULTS

The confluence of the PowerBuilder IDE, PowerScript, PBNI, and the DataWindow makes
PowerBuilder an excellent RAD tool. There is a reason this large body of PowerBuilder-based
code exists—for Rapid Application Development of functional database-driven solutions
PowerBuilder has no peer. The payoff for the development effort lies in the power of these
applications to let users view and manipulate complex datasets without being unnecessarily
concerned with the implementation details. Database-driven applications are hardly unique to

7



PowerBuilder, what is unique to PowerBuilder is the relatively low level of development effort
required to build them. For an organization, RAD provides faster time to market with a quality
product. RAD also means lowered development and maintenance costs because fewer pro-
grammers are able to accomplish more work.

3. SIMPLICITY STREAMLINES THE DEVELOPMENT PROCESS

PowerBuilder is a powerful Object Oriented (OO) development environment that largely
hides the complexities of OO programming and the impressive set of features it offers develop-
ers.  The PowerBuilder product itself is written C++ so it allows developers to have easy access
to low-level functionality. Yet, the PowerBuilder development environment is user-friendly
and easy to use, hiding an enormous level of implementation and portability details. While the
product itself is rich and complex, developers are provided with an easy to use IDE for stream-
lined application development. A RAD 4GL environment means a wider variety of developers
can use the tool. An individual with an aptitude for programming, but lacking formal training,
can easily pick up the tool; this is less true of a 3GL environment.

4. DATAWINDOW FUNCTIONALITY IS NOT AVAILABLE ELSEWHERE

Why is the PowerBuilder DataWindow so popular? Because the DataWindow is a powerful
database visualization tool packaged in an easy to use interface. Programmers who have used
the DataGrid control from Microsoft know it can be a painful programming experience
because it requires the developer to program to an extremely detailed programming interface.
Efforts to use it in even slightly unconventional arrangements quickly devolve into cell-by-cell
programming. Even more unfortunate is the DataGrid’s limited reporting capability.

The DataWindow and the Web DataWindow are now XML-enabled for importing and exporting
XML and optionally applying formatting with XSL. DataWindow’s underlying constructs
present complex information using a graphical interface with little programming required.

5. HARDWARE/OS PORTABILITY KEEPS FUTURE OPTIONS OPEN

PowerBuilder supports the Win32 platforms and, PowerBuilder components can be deployed
to application servers on Unix platforms, including Sun, HP, and IBM AIX. PowerBuilder
leaves cross-platform development as a current and future option and does not lock
PowerBuilder applications out of Unix environments.

P E AC E F U L  CO E X I STE N C E

The issue of .NET versus PowerBuilder does not have to be an either/or proposition. Sybase
recognizes the value of maintaining an open development environment, while also recognizing the
objective draw of .NET once the marketing hype is stripped away. .NET is one of the currently
viable development platforms and integrates Win32 operating systems, services, and Microsoft
Office technology. .NET support is a requirement for software vendors. Sybase PowerBuilder
supports Microsoft .NET and will continue to enhance this support so PowerBuilder shops can
continue leveraging their investment. Some time ago, Sybase developed a four-phase implemen-
tation strategy to support .NET. Sybase continues to execute to that carefully considered approach. 

8



Phase I – This phase was completed with the release of PowerBuilder 9.0 and support for
Web Services. PowerBuilder applications can build, publish and consume Web Services for
Microsoft .NET and other frameworks without extensive knowledge of Simple Object Access
Protocol (SOAP) or Web services Definition Language (WSDL).

Phase II – This phase is underway with the beta release of DataWindow.NET. Phase II intro-
duces DataWindow.NET and DataStore.NET. DataWindow.NET is a separately packaged
tool for developers using other .NET languages to take advantage of the patented
DataWindow technology for data access and manipulation. 

Phase III – To enable developers to reach into the .NET class libraries and the rest of the
platform, this third phase will implement a compiler that produces Microsoft Intermediate
Language code. This code will execute as managed code in the Common Language Runtime.
This means PowerBuilder applications can be intermingled with other .NET applications. 

Phase IV – This final phase opens the PowerBuilder IDE to support the .NET User Interface
designer. This will allow PowerBuilder applications to implement .NET user interface components.

Sybase is executing to this plan; phase I and a portion of phase II are completed. In retrospect,
given the slower than expected rate of .NET adoption, the plan exhibits a high degree of vision.
Rather than an all or nothing push to .NET, Sybase put its efforts into making PowerBuilder better
in ways that would serve all customers, including the .NET community. Sybase has taken, and
continues to take, a thoughtful approach to its .NET support. PowerBuilder is good for building
applications that are mission critical and data driven. With Phase I completed, and as this .NET
plan continues to unfold, PowerBuilder applications can productively drive the database engines
of .NET solutions.

CO N C LU S I O N

Objectively, although not the panacea it aspired to be four years ago, Microsoft’s .NET technology
is impressive. It is the fruit of some of the best minds in the business, working for a dominant
company with a powerhouse-marketing arm. It has a referential integrity that knits together the
diverse pieces of Microsoft’s multi-front software organization. 

PowerBuilder was designed for database-driven applications and has succeeded in virtually all classes
of business applications that require data access, manipulation, and processing. The PowerBuilder
IDE is powerful, simple, and intuitive. Using the IDE to create production PowerBuilder applica-
tions represents the essence of RAD. As demonstrated by its track record, Sybase is committed to
continue evolving PowerBuilder to address new technologies. PowerBuilder has added XML,
DOM, JSP, and Web Services support, among others, over the last few releases. These enhancements
represent an open strategy that supports developers as they continue expanding the utility of existing
applications into arenas that include .NET and affordably add value to their technology investments. 



Copyright © 2004 Sybase, Inc. All rights reserved. Unpublished rights reserved under U.S. copyright laws. Sybase, the Sybase logo, Adaptive Server,
DataWindow and PowerBuilder are trademarks of Sybase, Inc. All other trademarks are property of their respective owners. ® indicates registration in
the United States. Specifications are subject to change without notice. Printed in the U.S.A. 5/04

Sybase Incorporated
Worldwide Headquarters
One Sybase Drive
Dublin CA, 94568 USA
T 1.800.8.SYBASE
www.sybase.com


