
WRITTEN BY
ROLAND MÜHLBERGER

P B T E C H N I Q U E S

Using Interfaces with PowerBuilder
Implementing the concept

I
nterfaces are one of the most important concepts that have found their way into modern
software engineering in the past couple of years. Java, COM, CORBA, C# – all those
languages/concepts support interfaces. PowerBuilder does not.This article shows you how to

sneak the interface concept into PB by using some of its special features.

So Many Interfaces –
What This Article Is Not About

The term interface is a common one
in software engineering. In this article, I
define interface to mean “named collec-
tion of method definitions.” We espe-
cially don’t deal with:
• The PBNI, the PowerBuilder native

interface, which will be a part of PB9
and allows C++ classes to call into PB

• User interfaces – all kinds of GUIs like
Swing, the Windows GUI…

What Are Interfaces?
If you don’t know interfaces, the next

part should shed some light on the con-
cept. In short, interfaces define a set of
functions. If a certain class implements
all those functions, it is said to imple-
ment the interface. What can we do with
those classes? All classes that implement
an interface can be treated alike: we can
make a list of them and call the methods
defined in the interface. Or we can
define functions that take objects of a
specific interface as arguments and use
the methods that are defined for the
interface in these functions.

Let’s look at implementing interfaces
in C#, the successor of C++ for the .NET
platform:

public interface IPrintable {

void Print();

}

This simply defines an interface

called IPrintable with one method called
Print. We can have two nonrelated class-
es in the class hierarchy that both imple-
ment this interface (see Listing 1).

Both classes, Person and Account,
implement the interface IPrintable. We
can implement a function that only
works on objects of IPrintable:

public static void Print(IPrintable

ip) {

ip.Print()

}

{

// main program.

// ...

// create new object and call static

function Print

Person p = new Person("John","Test");

Print(p);

Account a = new Account("Savings", -

123.45);

Print(a);

We have created two completely differ-
ent objects but have used the same
method to print them out. What’s the good
thing about this? Interfaces don’t bother
with inheritance; they only look at which
methods a class implements. You can use
polymorphism without inheritance. If you
don’t know what polymorphism is, look it
up in any object-oriented programming
primer (in short, it’s the possibility of hav-

ing references point to objects of different
classes at runtime. The short program is a
good example of polymorphism).

Interfaces are somehow related to
inheritance, but there are a lot of differ-
ences. Table 1 shows you some.

Implementing Interfaces in PB
Lets get to the PB part of it all. How

can we get interfaces into PB? It doesn’t
support them natively, so we have to
find a different approach. PB has one
feature, called “DYNAMIC”, that allows
us to call functions or events on vari-
ables that don’t support those methods
at compile time. Here’s how it works:

PowerObject po

po = this.of_GiveMeAnObject()

po. DYNAMIC Print()

The short script shows us a local vari-
able of static type PowerObject that gets
assigned an object reference. We can’t
see which object po points to after this
call. It might be an object of class
PowerObject; it might also be an object
of class DataStore (which is inherited
from PowerObject). If we didn’t code the
“DYNAMIC”, PB would react with
“unknown function name Print()” at
compile time. But, by stating this call to
be dynamic, we tell PB: “Trust me, dur-
ing runtime po will point to an object
that has the function Print.”

We use this dynamic call to imple-
ment an interface “IPrintable”. Since we
want to make a lot of interfaces, we
should have created a base class for all
interfaces called “IBase” first. IBase is
inherited from PowerObject, which you
can do in PB by simply creating a new
“custom class object.” We inherit
IPrintable from IBase and then we
implement the interface methods. Our
interface will be simple as we have only
one function called “Print” that we

20 www.SYS-CON.COM/pbdj/PBDJ volume9 issue11

PLEASE
NEED
PHOTO
HI RES

TABLE 1 ?????????????????

INHERITANCE INTERFACE
Classes have exactly one base class Classes can have multiple interfaces
(apart from multiple inheritance)

Classes are part of the class hierarchy Interfaces are not related to the class hierarchy

Classes implement methods Interfaces only define methods

Classes can have any name Interfaces usually start with an uppercase “I”
Classes consist of methods and attributes Interfaces define of methods and attributes

need to implement. We create that pub-
lic function, giving it a return type of
Integer with no parameters. If you look
at the source code (available on at
www.sys-con.com/pbdj/source.cfm),
the function will be defined like this:

public function integer print ();

How do you implement this function?
Because we were talking about dynamic
calls, the content should be something like:

RETURN baseObj. DYNAMIC Print()

What is this baseObj? It’s the reference
to the object that implements the inter-
face. We need a place to define this base
object, and we use our base class IBase
to define the according methods:
SetObject and GetObject:
1. IBase gets a new private instance variable

called ipo_base of class PowerObject:

Private:

PowerObject ipo_base

2. Base gets a new function called
SetObject that takes a PowerObject
called apo_base as an argument and
assigns it to ipo_base:

ipo_base = apo_base

3. IBase gets another function called
GetObject that returns PowerObject.
The implementation is simply:

RETURN ipo_base

Having done that, we can implement
our Print function in IPrintable as follows:

RETURN ipo_base. DYNAMIC Print()

A big part of what we wanted to
achieve is already done; however, it’s still
far from perfect. We can now do some-
thing similar to the following:

Iprintable ip

DataWindow dw

DataStore ds

dw = this.of_GetDW()

ds = this.of_GetDS()

ip = CREATE IPrintable

ip.SetObject(dw)

ip.Print()

ip.SetObject(ds)

ip.Print()

DELETE ip

In addition, we can create classes that
take references to IPrintable objects and
use their Print Method.

What could be improved:
1. Creating the interface with create is

somehow strange. I don’t want to cre-
ate anything; I simply want to use the
interface. We need to make it easier to
use interfaces.

2. What if our base object doesn’t imple-
ment the functions stated in the inter-
face? We need to make our code more
robust.
To deal with the first issue, we imple-

ment a global function CreateInterface.
This function creates an object of a given
interface class and assigns the base
object to it. The function takes two argu-
ments, the reference to a PowerObject
called apo_base and a string called
is_interface. It yields an object of class
IBase, our base interface class:

global function ibase createinterface

(powerobject apo_base, readonly string

as_interface);

IBase if_new

// ---

if_new = CREATE USING as_interface

if_new.SetObject(apo_base)

RETURN if_new

end function

CreateInterface creates a new object of
the given interface class and sets the base
object to the object given as an argument
to the function. With this enhancement,
we can use interfaces similar to:

Iprintable ip

DataWindow dw

DataStore ds

dw = this.of_GetDW()

ds = this.of_GetDS()

ip = CreateInterface(dw, 'IPrintable')

ip.Print()

ip = CreateInterface(ds, 'IPrintable')

ip.Print()

That doesn’t look much nicer than the
part before, does it? You can see the
enhancement if you imagine a global
function called PrintMe that takes one
argument of class IPrintable:

global function integer printme

(iprintable aif_print);

RETURN aif_print.Print()

end function

With such a function we could code
our example as:

DataWindow dw

DataStore ds

dw = this.of_GetDW()

ds = this.of_GetDS()

PrintMe(CreateInterface(dw,

'IPrintable'))

PrintMe(CreateInterface(ds,

'IPrintable'))

// we leave the interface objects for

garbage collection...

As you can see, there’s no need for a
local variable of the interface class any-
more. In this case, we can’t destroy the
interface objects; we leave them for the
PB garbage collector.

If all these examples still don’t con-
vince you, the following provides an
example of polymorphism with the use
of interfaces – define a new class
PrintableList and implement the two
methods shown in Listing 2.

PrintableList takes objects of class (or
should we say interface?) IPrintable and
manages them in an open array. Now, if
you call PrintAll, the according method
Print of all the objects added to the list gets
called. The objects encapsulated in the
interface objects don’t need to have any
inheritance relationship (for instance,
DataStore and DataWindow and also
DataWindowChild). You can fill the list
with interfaces to any objects that imple-
ment the function Print and it will work!

I mentioned a second issue that could
be improved. The Print method is not
robust enough – if we call it on an object
that doesn’t implement the method, PB
simply gives runtime error 65, which
means dynamic function not found.

By using the exception handling intro-
duced in PB8, we can alleviate the prob-
lem. Listing 3 provides a more robust
implementation of the Print function
within our interface IPrintable.

We enclose the call to Print with a TRY-
CATCH block. If a runtime error occurs, it’s
caught. If the error code is 65, we use the
global function MethodNotImplemented
to show the error, otherwise the exception
is thrown again (that means an error
occurred within Print).

As I mentioned earlier, this works for
PB from version 8 up. Unfortunately,
there’s no way to “catch” this error in ear-

21PBDJ volume9 issue11www.SYS-CON.COM/pbdj/

FIGURE 1 An interface implementation
SmartPaste macro

22 PBDJ volume9 issue11 www.SYS-CON.COM/pbdj/

lier versions of PB, because PB stops
execution if it comes across runtime
error 65 (even trying to handle the error
in the application SystemError does not
work).One alternative is to use runtime
type information by querying the
classDefinition property of the base
object, but this is more complex than
the version presented and is rather slow,
so I won’t go into more detail about it
here.

Smart Work
Implementing numerous interface

functions can become quite tedious, and
because the basic layout is the same for all
functions, you can use templates or pre-
defined scripts to help with your work.
Another possibility is to use SmartPaste
with a macro defined as in Figure 1.

For functions that have the signature:

public function integer moveto (inte-

ger ai_x, integer ai_y)

SmartPaste will produce the code in
Listing 4 by using the above macro.

If you don’t know SmartPaste, it’s a
shareware tool usually used to create
header comments. It can be down-
loaded for free from www.romu.com/
smartpaste.

More Enhancements
There is one method that can make

using interfaces less error-prone: for every
class that implements the methods of an

interface, implement a new event that’s
called the same way an interface is. That
event doesn’t need arguments or a return
value. Then we can use the enhanced ver-
sion of the global function CreateInterface,
called CreateCheckedInterface, to create
an interface:

IBase if_new

// ---

IF IsValid(apo_base) THEN

IF apo_base.TriggerEvent(as_inter

face) = 1 THEN

if_new = CREATE USING as_inter

face

if_new.SetObject(apo_base)

ELSE

InterfaceNotImplemented(apo_base,

as_interface)

END IF

END IF

RETURN if_new

This piece of PowerScript relies on
the fact that TriggerEvent returns 1 if
the event provided as an argument is
implemented (apart from executing the
code of the event, of course). If the
event does not exist, the interface is
apparently not implemented, therefore
a function to deal with this issue is trig-
gered.

When working with interfaces it’s a
good idea to know whether a certain
object is of a class that implements the
interface. With the event implementa-
tion stated earlier, we can write an
interface test HasInterface:

global function boolean hasinterface

(powerobject apo, readonly string

as_interface);

Boolean b_ret

// ---

IF IsValid(apo) THEN

b_ret = (apo.TriggerEvent(as_inter-

face) = 1)

END IF

RETURN b_ret

end function

Summing It Up
There is a way to implement the con-

cept of interfaces in PB. The main idea
behind it is to use a wrapper interface class
and call the interface methods with a
dynamic call. In PB 8 and above the encap-
sulation of the call can be made robust by
using exception handling. The proposed
concept doesn’t support instance variables
as part of the interface; they need to be
encapsulated by functions.

Note: In the case of an error, PB8 does
not behave the same within the IDE and
during runtime. It shows its own mes-
sagebox with the system error when
starting the program within the IDE,
and in the executable it doesn’t. PB9
programs (if you’re a beta participant)
work okay when started from within the
IDE. They still show the messagebox
when debugging.

All the source code for this article can
be downloaded from www.romu.com/
interfaces. ▼

office@romu.com

AUTHOR BIO
Roland Mühlberger

works as a PowerBuilder
class librarian and

software engineer for
the Austrian company
ecosys. In addition, he

runs his owns business
(ROMU Software) as an
independent consultant.

His special interests
(besides mountain

climbing) are
programming tools;
he’s the author of

SmartPaste, a tool for
documenting PB

source code.

public class Person: IPrintable {
public string firstName;
public string lastName;
// … any other needed methods
public void Print() {

Console.WriteLine(lastName + ", " + firstName);
}

}
public class Account: IPrintable {

public string acctName;
public double currentAmount;
// … any other needed methods

public void Print() {
Console.WriteLine("Account " + acctName + ":" +
currentAmount);

}
}

public subroutine of_printall ();
Long l_cur, l_count
l_count = UpperBound(if_printables[])
FOR l_cur = 1 TO l_count

if_printables[l_cur].Print()
NEXT
end subroutine

public function long of_addobject (iprintable aif_print);
Long l_count
l_count = UpperBound(if_printables[])
l_count ++
if_printables[l_count] = aif_print
RETURN l_count
end function

Integer retVal

// ---
TRY

i_ret = ipo_base. DYNAMIC Print()
CATCH (RuntimeError rte)

IF rte.number = 65 THEN
// R0065 - dynamic function not found
MethodNotImplemented(ipo_base, 'print', 'integer
print()', this)

i_ret = -1
ELSE

// some other error - throw again
THROW rte

END IF
END TRY
RETURN retVal

Integer i_ret
// ---
TRY

i_ret = ipo_base. DYNAMIC Moveto(Integer ai_x, Integer
ai_y)

CATCH (RuntimeError rte)
IF rte.number = 65 THEN

// R0065 - dynamic function not found
MethodNotImplemented(ipo_base, 'Moveto', &

'Integer Moveto(Integer ai_x, Integer ai_y)', this)
ELSE

// some other error - throw again
THROW rte

END IF
END TRY
RETURN i_ret

Listing 4

Listing 3

Listing 2

Listing 1

