
14

WRITTEN BY
ROLAND MüHLBERGER

T E C H N I Q U E S

Using Interfaces with PowerBuilder
Implementing in the real worldPART 2 OF 2

W
ouldn’t it be nice if we could use DataWindows, DataStores, and
DataWindowChild objects in the same way. This article shows
you how.

In Part 1 (PBDJ, Vol. 9, issue 11) I
described a way to implement Java’s
and C#’s interface concept into PB. We
did the following:
• Created a wrapper class (the “inter-

face”) that has a reference to a
PowerObject as an instance variable

• Created a method within the wrapper
class for every method of the interface

• Called the actual method per dynam-
ic call

• Encapsulated the call with a
TRY/CATCH-block in PB 8 and above

• At runtime, created the interface
object, set its base object, and used it

This time we move away from con-
cepts and switch over to using interfaces
in the “real programmer’s world.” This
article shows you how to write algo-
rithms (and also the pitfalls along the
way) that don’t distinguish between
DataWindows, DataStores, and
DataWindowChild objects (if you come
across the term “DataWindowChildren”,
don’t worry, this is my personal abbrevi-
ation for DataWindowChild objects).

Knowing Your Way
Before starting our journey, we

need to know why we should take it.
First, what’s our goal? We want to treat

DataWindows, DataStores, and
DataWindowChildren the same. Why?
These classes are essential for
PowerBuilder programmers as a good
programmer frequently uses them.
Why can’t we just create one single
variable and let it point to the appro-
priate object at runtime? Figure 1
sheds some light on this.

The common base class for all three
classes is PowerObject, which is limit-
ed in the number of methods it under-
stands. DataWindows and DataStores
do have lots of methods in common,
but because they are on completely
different branches of the inheritance
tree, you can’t use a single variable to
point to a DataStore or a DataWindow
and use their common methods.

With this in mind, it’s not easy to
write an algorithm that works on any
of those objects; you need lots of
CASE statements. Sometimes using
ShareData will help, but this is limited
to buffer manipulations. Let me show
you where it won’t matter if the object
you work on is a DataStore,
DataWindow, or a DataWindowChild.
Sounds promising, doesn’t it?

Get Going
As already mentioned, the three

classes have many methods in com-
mon. Just think of all the GetItem
statements, Sorting, Filtering… Our
first step is to determine the common
methods (see Figure 2).

The green rectangle represents all
the DataWindow methods, the yellow

section all the DataStore methods,
and the pink one all the
DataWindowChild methods. The
orange segment is all the methods that
DataWindows and DataStores have in
common, and the blue is all the meth-
ods shared by all three classes.

In Figure 2, the DataWindow has all
the methods of the
DataWindowChild, and the DataStore
has some methods the DataWindow
doesn’t. In fact, only one method,
CreateFrom, goes into the yellow part.

Table 1 shows you some prominent
examples of methods from each section.

Moving Along
In the table the blue column is the

most important; it holds all the meth-
ods that all three classes understand.
Implement an interface called
IDwCore (“Interface DataWindow
Core”) for it, then inherit two classes
from it: the interface class IDwDs
(“interface DataWindow +
DataStore”) for the orange part and
IDwDwc (“interface DataWindow +
DataWindowChild”).

Figure 3 shows the resulting class
hierarchy. For the base class use
IBaseAs, the base interface class. (I
constructed and explained the base
class in Part 1. For more information,
visit www.romu.com/interfaces.)

Implementing the interface meth-
ods is fairly straightforward, and the
code is pretty much the same for all of
them. The following code is an exam-

FIGURE 1 Part of the PowerBuilder
class hierarchy

PBDJ volume9 issue12

TABLE 1 Examples for methods

Color Classes Methods
Only DataWindow Copy, paste, show, hide

DataWindowChild and DataWindow, ScrollToRow, SetRedraw, SetRowFocusIndicator
but not DataStore

All three classes SetItem, GetItemX, Find, Filter, Sort, SaveAs

DataWindows and DataStores, but not Create, print, all graph methods
DataWindowChild

DataStore only CreateFrom

www.POWERBUILDERJOURNAL.com

15www.POWERBUILDERJOURNAL.com PBDJ volume9 issue12

ple of the interface method for
AcceptText:

Integer i_ret

// ---

TRY

i_ret = ipo_base. DYNAMIC

Accepttext()

CATCH (RuntimeError rte)

IF rte.number = 65 THEN

// R0065 - dynamic function not

found

MethodNotImplemented(ipo_base,

'Accepttext', &

'Integer Accepttext()', this)

ELSE

// some other error - throw

again

THROW rte

END IF

END TRY

RETURN i_ret

As mentioned in Part 1, I use
SmartPaste, a PowerBuilder documen-
tation tool, for this task
(www.romu.com/smartpaste).

Be Careful Not to Trip
What we’ve done so far sounds easy:

for each method that’s in all three
classes implement an interface
method in IDwCore; for the ones that
only DataWindow and DataStore
have, implement the method in
IDwDs; and methods of DataWindows
and DataWindowChild go into
IDwDwc. (You can download the code
from www.sys-con.com/pbdj/sourc
ec.cfm or www.romu.com/interfaces.)
The result of implementing all inter-
face methods for IDwCore is an inter-
face class with 126 methods. The
inherited interfaces IDwDs and
IDwDwc have 84 and 25 methods,
respectively.

There are several methods that need
some explanation.

VARIABLE PARAMETER LISTS
Some methods, like

ImportClipBoard, ImportFile,
ImportString, and Retrieve, have a
variable list of parameters.
(PowerBuilder doesn’t allow us to
implement such methods or override
them, but you can see them in the
PowerBuilder browser; they have an
ellipsis (…) in the parameter list.)

For those methods we implement a
whole range of interface methods in
order to mimic a “variable parameter
list”. For instance, for Retrieve imple-
ment an interface method without a
parameter, one with one parameter,
one with two. If you want to use even
more parameters, you need to
enhance the interface class and imple-
ment a method with even more para-
meters

INSTANCE VARIABLES
DataWindows and DataStores have

two identical instance variables that
are commonly used and should also
go into the interface IDwDs, object
and dataObject. To achieve this, write
interface methods called
GetDWObject and GetDataObject
(together with SetDWObject and
SetDataObject) that access the
instance variables by doing a type cast
and then accessing the property. This
is the only place in the interface class-
es where you’ll find CASE statements.
(Every interface method of IDwCore
could be written that way, but this
works only for our special combina-

tion of DataWindow, DataStore, and
DataWindowChild. A big advantage of
interfaces is that you usually do know
which classes will implement the
interface, and can therefore do this lit-
tle trick.)

READ-ONLY ARGUMENTS
Some built-in methods have argu-

ments that are passed by read-only.
PowerBuilder does not allow you to
use those arguments in a dynamic
call, so you need to assign it a local
variable first.

Having Reached the Goal
Now that we’ve implemented the

interface classes, we’re ready to use
them. The usual way is:
1. Create a service class that operates on

objects of the interface class. You can
use all the methods the interface pro-
vides.

2. During runtime, create the interface
for a class using CreateInterface. This
function creates the interface wrapper
and sets the reference that the inter-
face object encapsulates.

3. Call the service class with the newly
created interface object.

Our example will return informa-
tion about the object: how many rows,
the current row, the visible part, and
lots more.

For the sake of simplicity imple-
ment this as a global function
f_GetDWInfo, which takes an
IDwCore-Object as a parameter and
returns the information as a string.
Figure 4 shows the interface.

Listing 1 shows the implementa-
tion. Use “if” for the interface type
prefix. The next part shows how to call
the function with any of the three
classes.

DATAWINDOW

IDWCore if_core

if_core = CreateInterface(dw_test,

'IDWCore')

MessageBox('DataWindow',

f_GetDWInfo(if_core))

DATAWINDOWCHILD

IDWCore if_core

DataWindowChild dwc

dw_test.GetChild('state', dwc)

if_core = CreateInterface(dwc,

'IDWCore')

MessageBox('DataWindowChild',

f_GetDWInfo(if_core))

FIGURE 2 Method sections diagram)

FIGURE 3 Interface class hierarchy

FIGURE 4 Interface for f_GetDWInfo

FIGURE 5 Example result for
f_GetDWInfo

www.POWERBUILDERJOURNAL.com16 PBDJ volume9 issue12

AUTHOR BIO
Roland Mühlberger works

as a PowerBuilder class
librarian and software

engineer for the Austrian
company ecosys. In

addition, he runs his owns
business (ROMU
Software) as an

independent consultant.
His special interest
(besides mountain

climbing) are
programming tools; he’s

the author of SmartPaste,
a tool for documenting PB

source code. aricr@arconsultinginc.com

DATASTORE

DataStore ds_test

IDwDs if_core

ds_test = CREATE DataStore

if_core = CreateInterface(ds_test, 'IDwDs')

if_core.SetDataObject('d_customer')

MessageBox('DataStore', f_GetDWInfo(if_core))

It works! We can call f_GetDWInfo with a
DataWindow, a DataStore, or a DataWindowChild.
Figure 5 shows a possible example for a
DataWindowChild.

The source code is from an example that’s avail-
able for download. I’ve chosen a simple one, but it
still shows the power of interfaces.

Summing It Up
Using the implementation style for interfaces

proposed in Part 1, I designed interfaces for com-
mon functions of DataWindows, DataStores, and
DataWindowChild objects. Using those interfaces
enabled me to write pieces of code that work with
any of the three objects. ▼

String s_ret

s_ret = 'ClassName: ' + aif.ClassName() + '~r~n'
s_ret += 'Rows: ' + String(aif.RowCount()) +
'~r~n'
s_ret += 'Deleted Rows: ' +
String(aif.DeletedCount()) + '~r~n'
s_ret += 'Filtered Rows: ' +
String(aif.FilteredCount()) + '~r~n'
s_ret += 'Current Row: ' + String(aif.GetRow()) +
'~r~n'
s_ret += 'Current Column: ' +
String(aif.GetColumnName()) + '~r~n'
s_ret += 'Modified Rows: ' +
String(aif.ModifiedCount()) + '~r~n'
s_ret += 'Current Zoom: ' + aif.Describe('datawin-
dow.zoom') + '~r~n'
s_ret += 'First Line: ' + aif.Describe('datawin-
dow.firstRowOnPage') + '~r~n'
s_ret += 'Last Line: ' + aif.Describe('datawin-
dow.lastRowOnPage') + '~r~n'

RETURN s_ret

Listing 1

