WRITTEN BY
RoLanD
MUHLBERGER

AuTHor Bio

Roland Miihlberger
works as a PowerBuilder
class librarian and
software engineer for
the Austrian company
ecosys. He also runs his
owns business (ROMU
Software) as an
independent consultant.
His special interest,
besides mountain
climbing, is program-
ming tools. He's the
author of SmartPaste, a
tool for documenting
PB source code.

ometimes it simply doesn't matter
whether you use a function or an
event, just pick one and stick to it

This article will shed some light on
the differences between the two ways of
implementing scripts in PowerBuilder:
functions and events. I will discuss the

mation on each of them. Then you'll be
able to decide for yourself when to use
which.

In the old days of PowerBuilder, func-

tions and events were a different kind of
beast. But as PowerBuilder evolved,
functions and events became more and
more similar. Now many programmers
aren’t sure what the differences are, and
when to use which.

In the Sybase PowerBuilder news-
groups (see news://forums.sybase.com)
you'll find a wealth of information, but I
didn’t find a thorough and up-to-date
posting on the issue. So in this article I
will tell you the similarities and the dif-
ferences of functions andevents. By the
way, I used PowerBuilder 10 for my com-
parison.

Prelude: Correct Terms

In this article, the following terms
from the object-oriented domain will be
used:

tion or event.

Overloading: implementing a method in

a class that already has a method with

such a name, the difference lies in the

argument types. No inheritance is

involved. Overloading in PowerBuilder is

useful for quite a few things:

¢ Mimicking optional arguments to
functions: Other languages can define
default values for arguments in the
definition of the function itself. If you
omit those arguments, the system will

Builder doesn't (yet!) have this func-
tionality, we can mimic it by the using
overloading. Simply implement a

AA A4

Functions and Events

When to use which?

function with its required parameters.
After that, implement another func-
tion with at least one lessargument
(beginning on the right-hand side, of
course). Then, in the new functions,
call the first function with the missing
arguments set to default values.

: * Support for different datatypes: you
issues in detail, giving background infor- :

want to define a function that can
either take an integer or a string as
input. You can give them the same
name, just use integer as the argu-
ment type for the first, and string for
the argument type of the second func-
tion. At runtime, PowerBuilder will
find the correct function for you.

A good example for overloading can

be found in the class systemfunctions:
i MessageBax. You will find both of the
i issues above implemented there, option-

al arguments (leave out all but the first
two arguments) as well as different data

types (either use a string or an integer as
i the second argument). Picture 1 gives
i you a snapshot of the PowerBuilder

browser.
Overriding: implementing a method

i in a derived class using an identical set
i of arguments (names as well as

datatypes) found in the base class. It
needs at least one base and a derived
class to be implemented. Okay, this is

nothing new to you. You do it every day
Method: used as a general term for func-

when programming in PowerBuilder.
Simply doubleclick on an event in the
event list or a function in the function

: list and, voila, - the overriding is done.
¢ Picture 2 will show you the difference
: between overloading and overriding.

PowerBuilder also has its own terms:
Extending: implementing an event in

: such a way that the code of the base
class is executed before the code of the
current class. In deep class hierarchies

i this means that the code of the root class
is executed first, then the code of the

use the default values. Because Power-
the class deri ved from that class...until

i you reach your own code, which exe-

i cutes last. You can switch this behaviour

class deri ved from it, then the code of

¢ by toggling the “Extend Ancestor Script”
¢ in an event’s context menu. Unfortu-

nately there’s no way to see whether an

: event is extended or not just by looking
: at the event script painter. You need to
¢ rightclick to the script and check

whether “Extend Ancestor Script” is
checked or not. (For those of you who

: are ISUG members there’s an enhance-
: ment request to show that information

in the script painter. Please go to
@@@todo to vote for it.) Extending used

¢ to have the drawback that one couldn’t
¢ access the retumvalue of the base event.

But PowerBuilder introduced a meta-
variable, ancestorRetumValue. You don't

: need to declare it, it’s already available if
: you extend an event. AncestorRetumVal-

ue always has the datatype retumed
from theevent.

Similarities

As I said before, functions and events
are very similar (this is one reason why

: it's hard to decide when to use which).
: These things do have functions and
¢ events in common:

¢ Functions and Events can be POSTED
by using the keyword POST

i o The function or event of a direct base

class can be called by using super: :

¢ The function or event of an arbitrary
super class can by called by using
Classname::

¢ According to the PowerBuilder online

help there’s no perf o rmance differ-
ence between functions and events

: » Functions and events can be overrid-

den easily by doubleclicking the func-
tion/event list.

¢ Functions and events can be imple-
mented using the same script painter.
I mention this because up to PB 6, you
used a different approach for each.
Ancestor code can be seen by using
the rightmost dropdown in the script
painter

Differences

: So now for the interesting part: what are

....... oave nARl AARART L I:/

the differences? Some of them are rather
academic, but can be veryimportant,
especially to people writing class
libraries.

ACCESS LEVELS

You can only define the access level
for functions: it can be either “private.”
which means you can only call it from
within the same class, or “protected,”
which means you can call it from within
the same or inherited classes, or “pub-
lic,” which means you can also call the
function from outside the object.

Events are implicitly public, there’s no
way to make them private or protected.

OVERLOADING

Only functions can be overloaded.
Just look into any system class. Power-
Builder uses this ability in most of them.
Events can't be overloaded. If you try,
PowerBuilder will say “Duplicate event
name.”

OVERRIDING

Both functions and events can be
overridden. But whereas new events are
implicitly extended, functions aren't.
Here you need to call the base class
function explicitly.

DYNAMIC CALLS

When you use DYNAMIC to call a
method, functions and events behave
differently. Functions will produce a run-
time error; events will fail silently. You
will even have a chance to find out
whether the event really existed, because
PowerBuilder will set retuming any
value to NULL if it doesn'’t find it.

Using exception handling you can
catch the runtime error that Power-
Builder throws (“dynamic function not
found”) when a function called dynami-
cally isn’t found.

TRIGGEREVENT

Another kind of dynamic call is using
the TriggerEvent. You can build an event
name during runtime and use the name
(a string variable) to call an event.

This is an interesting feature in PB
and the only thing close to “function
variables” that PowerBuilder provides.
The good thing about it is that the event
doesn't need to exist at runtime.

The downside is you can't provide
any parameters to the called event or get
the result (apart from using any global
means for the exchange, for instance,
the message object). All the arlguments
you defined will be NULL using this syn-
tax and the retumed value is simply lost

....... oave nARI AARART L. 1:/

in cyberspace. There’s no such possibility
with functions.

POSSIBILITIES FOR EMBEDDED OBJECTS

When you embed an object in anoth-
er (for instance, putting a control on a
window or adding an object to the non-
visual object list), thus implicitly creating
an embedded class, you can only edit its
events. You can override/extend them or
even add events. PowerBuilder gives you
no way to override or add functions to
those embedded classes. This is really a
GUI deficiency because the tests I ran
showed that PowerBuilders syntax
would allow add/override functions for
embedded classes.

A major drawback is that you can’t
view the ancestor code for functions in
embedded classes. But, as I said, this is
only a matter of the script painter not

THE NEED FOR RETURN STATEMENT

In built-in events, there’s no syntacti-
cal need to issue a RETURN statement.
PowerBuilder will simply return 0 in that
case (which means “continue” in the
Windows API sense. Retuming 1 would
mean “stop processing, I've already han-
dled the call.”)

User-defined events and functions
need to implement at least one RETURN
statement when a retumtype is
declared.

MESSAGING SYSTEM

Events can have message IDs. By
selecting a message ID, you tell the sys-
tem to call this event whenever the mes-
sage with the selected message ID
occurs in your application. PowerBuilder
already predefines many events (the

Appication | Datawindow | ‘Window [

System | Enumerated ; Stucture

Menu | LIser Object | Function ‘ Proy
| G st el]) e

@ powerchiect
& ﬂ applicaton

+- @@ pbtocppobject
4 B stucture

Ly match [readonly sting 51, readonly string 52) returns boolean
matches [readonly string <1, readonly sting £2) retuns boolean

T function_abect max [double ¥, double v | retums double

i-\ i araphicobject =2 messagebay [sting o, boolean t] 1etuns integer

il graws ng messagebox [sting o, bockean b, ican i] refurns integer

Lo grdizpatic ‘-2_{, mezzagebox [string o, boodeant, icon i, button b] returns integer

+- ¥ nomvisualobgect - By messagebox [string c. booksan t, icon i, button b, integer d | retums integer

mezsageboy [string o, double L) returng integer
4 messagebox [string ¢, double L icon i] reluns mteger

¥ @ traceactivitynode
™ systemfunchons

:-"QJ messageban [sting ¢, double 1 icon i, button b | returhs integer

&y meszagebox [sting o, double b icon i, button b, integer d | retumns integes
1) messagebox [string o longlong t) retums integer

l—b messagebox [string c, longlong t, icon 1] returns integer

=y messagebox [string &, longlongt, icon i, buttan b) 1etuins integes

By messagebox [sting o, longlong b, icon i, bulton b, integer d | retung integer

By messagebox [string o, sting t) returns mtegsr

Eiyy mezsagebon [string o, string t, iconi) retums integer

by messagebox [string ¢, string t, iconi, button b | retums integer
4 megsaaebon | string c. string t,

5y mid [readonly sting 5, long # | retuing string

icoh i, button b, integer d) retumes integer

FIGURE 1 |

letting us. The PowerScript parser can
workwith functions in embedded class-
es. Who knows, maybe we'll get some
way to view and implement functions
for embedded classes as well.

EXCEPTION HANDLING

Built-in events (like open, clicked,
etc) can't throw a checked exception (an
object of a class deri ved from the system
class Exception). You can only use
unchecked exceptions (all objects of a
class derived from RunTimeError). The
reason is that checked exceptions must
be defined in the event interface, and
the event interface for built-in events is
already defined by PowerBuilder.
Checked exceptions need to be defined
as part of the method interface (and
therefore force the caller to deal with
them) whereas an unchecked exception
doesn’t have need that.

clicked event on CommandButtons), but
you can map any event of the event ID
dropdown to your own event (for exam-
ple, pbm_other).

This system is only available for
events and not functions. Actually, this
was the main difference between func-
tions and events in the early stages of
PowerBuilder, because there was no way
to create an event without having an
event ID.

CROSS-APPLICATION METHOD CALLS

If you have to send a message to a
PowerBuilder program from outside, the
only way to do it is to use the operating
system’s own messaging system. There’s
a range of user-defined message IDs that
you can use (starting at 1024). In Power-
Builder you map those messages to
events with custom event IDs. Pbm_cus-
tom01 maps to 1024, pbm_custom02

maps to 1025, and so on. You are limited base classes of controls (your

in the arguments you can use. There are DataWindow ancestor, for example).
only two predefined arguments — 1Param
and wParam. You won't use functions or events
Calling events from outside works for : exclusively. In fact, there are lots of times
all objects that have aWindows handle when it simply doesn’t matter whether
(windows, windows controls, ...) because you use a function or an event to imple-
the calling application needs to know ment your source. In those cases, you
this handle as well to make the call. should decide and stick to one or the
There’s no way to call a function from other. But sometimes it’s good to think
outside an application. ahead and choose wisely. This list of dif-

ferences will help you do that.
Conclusion
Now that we have ticked off the simi-

larities and differences, it’s time to

decide. In fact, there’s no definitive deci-

sion to be made between functions and

events. It lies in how you do your pro-

gramming. But I can give you some

advice to help you make your decision:

¢ When programming a class library or
any class that you think will be used or
derived from quite a lot, try to be “aca-
demic” and think about access levels.
Don't make the methods public that
shouldn’t be called from outside. Then
it’s clear that you will use functions for
them instead of events.

¢ Use the “template functions” and
“hotspot events” system. That means
that code that shouldn't be overridden
(the template methods) sits in func-
tions, and code that should be overrid-
den (the hot spots) sits in events. The
reason is that you can define the
access level for the functions (the ones
that are called from outside), and
when you inherit, you usually only
need to implement events, making the
list of spots to override shorter.

¢ Ifyou use exception handling with
checked exceptions, you are limited to
using user-defined events and func-
tions. Quite a big discussion has been
going on about checked and
unchecked exceptions in the news-
groups of other programming lan-
guages. I personally dislike the
checked ones because they introduce
implementation details to the inter-
face of the class. WheneverI change
the implementation and I'm forced to
throw other exceptions, I need to
change the function interface as well.
So all programmers using my class are
forced to change their code as well,
which is bad. So for me, this issue
doesn't exist. I can throw exceptions in
events as well as functions, because I
simply use the ones inherited from
RunTimeError instead of Exception.

* Use functions for overloading.

¢ Use events to give a programmer a
chance to override the logic in embed-

ded classes. This is particularly true for

PN nnni . P e oave nARl AARART L I:/

